If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+113X-200=0
a = 1; b = 113; c = -200;
Δ = b2-4ac
Δ = 1132-4·1·(-200)
Δ = 13569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(113)-\sqrt{13569}}{2*1}=\frac{-113-\sqrt{13569}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(113)+\sqrt{13569}}{2*1}=\frac{-113+\sqrt{13569}}{2} $
| 8m+15=5m+42 | | 13=c÷9-7 | | f(-3)=-3(-3)-5 | | s=1/5(300-10-5) | | 16n^2-7=-6 | | -2s+-249=-905 | | (X-12)-(x-9)=x-5 | | f(-6)=-3(-6)-5 | | 4x-11+5x=5+11x-9 | | c(42)=90(42)+1800 | | -r-10r=90 | | 6x-2-4=12 | | 3x-12=2×+7 | | 2|b-5|=-8 | | 3x+2(2-1)=33 | | 6x-27+6x=57 | | 1.4=8.8-2w | | x÷2+27=67 | | 30=5(2+m) | | 563=41+18r | | 18=x+4+18x-5 | | 12(2)^x+3=96 | | 8+2x+2x=24 | | 8x+5=-8+5x+25 | | -4x-10x=90 | | 3a(2a-1)=a-(a+2) | | 18=18x-5+x-4 | | 8x=5x-33 | | 3(x+2)9x=5 | | (3x+1)=(x+3)=3(x+1) | | x^2+2x=81 | | -7n+2)=-14-7n |